Entropy measures for biological signal analyses

نویسندگان

  • Jianbo Gao
  • Jing Hu
  • Wen-wen Tung
چکیده

Entropies are among the most popular and promising complexity measures for biological signal analyses. Various types of entropy measures exist, including Shannon entropy, Kolmogorov entropy, approximate entropy (ApEn), sample entropy (SampEn), multiscale entropy (MSE), and so on. A fundamental question is which entropy should be chosen for a specific biological application. To solve this issue, we focus on scaling laws of different entropy measures and introduce an ensemble forecasting framework to find the connections among them. One critical component of the ensemble forecasting framework is the scaledependent Lyapunov exponent (SDLE), whose scaling behavior is found to be the richest among all the entropy measures. In fact, SDLE contains all the essential information of other entropy measures, and can act J. Gao ( ) PMB Intelligence LLC, PO Box 2077, West Lafayette, IN 47996, USA e-mail: [email protected] J. Gao Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA J. Hu Affymetrix, Inc., 3380 Central Expressway, Santa Clara, CA 95051, USA W.-w. Tung Department of Earth & Atmospheric Sciences, Purdue University, West Lafayette, IN 47907, USA as a unifying multiscale complexity measure. Furthermore, SDLE has a unique scale separation property to aptly deal with nonstationarity and characterize highdimensional and intermittent chaos. Therefore, SDLE can often be the first choice for exploratory studies in biology. The effectiveness of SDLE and the ensemble forecasting framework is illustrated by considering epileptic seizure detection from EEG.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating the Visual Biofeedback Signals Applicable to Reduction of Wrist Spasticity: A Pilot Study on Stroke Patients

Introduction: Application of biofeedback techniques in rehabilitation has turned into an exciting research area during the recent decade. Providing an appropriate visual or auditory biofeedback signal is the most critical requirement of a biofeedback technique. In this regard, changes in Surface Electromyography (SEMG) signals during wrist movement can be used to generate an indictable visual b...

متن کامل

A New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal

The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...

متن کامل

A New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal

The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...

متن کامل

Assessing the Effects of Alzheimer’s disease on EEG Signals Using the Entropy Measure: a Meta-Analysis

Introduction and Aims: Alzheimer’s disease is the most prevalent neurodegenerative disorder and a type of dementia. 80% of dementia in older adults is because of Alzheimer’s disease. According to multiple research articles, Alzheimer's has several changes in EEG signals such as slowing of rhythms, reduction in complexity and reduction in functional associations, and disordered functional commun...

متن کامل

INFORMATION MEASURES BASED TOPSIS METHOD FOR MULTICRITERIA DECISION MAKING PROBLEM IN INTUITIONISTIC FUZZY ENVIRONMENT

In the fuzzy set theory, information  measures play a paramount role in several areas such as decision making, pattern recognition etc. In this paper, similarity measure based on cosine function and entropy measures based on logarithmic function for IFSs are proposed. Comparisons of proposed similarity and entropy measures with the existing ones are listed. Numerical results limpidly betoken th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011